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Abstract: This study examines the modelling of volatility in Nigeria's interest rate returns, comparing various GARCH models. 

The data used in the study were extracted from the Central Bank of Nigeria’s (CBN) online statistical database on deposit bank 

interest rates. Both first- and second-order GARCH models were fitted to the data using EViews version 10. The results 

indicated that the second-order TGARCH (2,2) model provided the best fit for the data. Model selection was based on the 

Akaike Information Criterion (AIC), and model diagnostics were conducted using the ARCH effect test, QQ-plot, and serial 

correlation test to ensure robustness. The study's findings revealed a higher probability of gains than losses for individuals who 

obtained loans from banks during the study period. However, the variables analysed in this study exhibited extreme volatility, 

which suggests that users of interest rates were exposed to considerable risks. This means that bankers, customers of deposit 

money banks, and investors should expect rewards for holding such a risky asset. It was concluded that ARCH-GARCH models 

not only estimate expected returns on interest rates but also assess investors' reactions to risk, as revealed in the leverage effects 

captured in the second-order TGARCH (2,2) model, which was provided as the best fit for the data. Based on these findings, 

the study recommends further investigation into the volatility of interest rates. 
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1. Introduction 

 

Fluctuations in interest rate returns in the banking sector are a critical factor in determining financial stability, as they impact a 

bank's ability to manage risks, set appropriate interest rates, and adapt to economic fluctuations. The volatility of interest rate 

returns plays a crucial role in shaping the financial landscape of any economy, and this is especially true for banking sectors in 

emerging markets such as Nigeria. As the global financial environment becomes increasingly interconnected, the volatility of 

interest rates has the potential to create both risks and opportunities for banks, making the accurate modelling of this volatility 
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essential for effective risk management, policy formulation, and investment decision-making. In Nigeria, where banks operate 

in a complex environment characterised by volatile exchange rates, inflationary pressures, and cyclical regulatory reforms, 

accurately modelling interest rate volatility is crucial for understanding market behaviour and mitigating potential risks [9]. 

However, despite the growing importance of understanding interest rate dynamics, the existing literature on modelling volatility 

of bank interest rate returns in Nigeria remains limited and often inadequately addressed. Many studies to date have focused on 

stock market volatility or broad macroeconomic variables, leaving a significant gap in exploring how volatility in interest rate 

returns specifically affects banks in Nigeria. Financial systems face unique challenges, such as inflation, interest rate volatility, 

and regulatory uncertainty. Furthermore, few of these numerous studies have examined interest rate volatility at the global 

level, and there is a notable gap in research that focuses specifically on the Nigerian banking sector. Existing studies often focus 

on stock market volatility, exchange rates, or general macroeconomic factors, but do not explore how fluctuations in interest 

rate yields specifically affect Nigerian banks. Furthermore, many studies that attempt to model financial volatility in Nigeria 

primarily rely on first-order GARCH models and traditional methods, which may not capture the dynamic and nonlinear nature 

of interest rate volatility in emerging markets like Nigeria.  

 

The family of generalised autoregressive conditional heteroskedasticity (GARCH) models has gained popularity in financial 

econometrics for its ability to model time-varying volatilities in financial data [12]. However, despite its widespread use, there 

is limited empirical evidence on which variant of the GARCH model best captures the volatility of Nigerian banks’ interest 

rate returns. Most studies applying GARCH models in the Nigerian context tend to focus on other financial variables, such as 

crude oil prices, stock prices, or exchange rates, leaving a large gap in understanding the performance of these models when 

applied to interest rate data [13]. Furthermore, the choice of GARCH model – whether standard GARCH, exponential GARCH 

(EGARCH), or first- and second-order threshold GARCH (TGARCH) – has not been rigorously compared in the context of 

Nigerian bank interest rates, limiting the ability of financial analysts to choose the most appropriate instrument to forecast 

fluctuations in this sector [1]. This study aims to fill this gap by systematically comparing the effectiveness of different GARCH 

models in modelling the volatility of Nigerian banks’ interest rate returns [8]. By evaluating models such as standard first- and 

second-order GARCH, EGARCH, and TGARCH, the research will identify the approach that provides the most accurate and 

reliable forecasts of interest rate volatility, thereby providing valuable insights into the risk management strategies of Nigerian 

banks. The specific objectives of the study are to analyse the dynamics of Nigerian banks’ interest rate volatility, compare the 

forecasting performance of different GARCH models, and recommend the most effective model for use in this context. The 

significance of this research lies in its potential to improve the accuracy of financial forecasts and enhance decision-making 

within the Nigerian banking sector. By providing a better understanding of interest rate volatility, the study will support the 

formulation of more robust risk management strategies, ultimately contributing to the stability and growth of the Nigerian 

financial system. 

 

2. Methodology 

 

2.1. Model Specification 

 

Modelling involves identifying the key features of the real-world economy and making appropriate simplifications or 

assumptions to effectively capture those features. Model specification in statistical modelling is the process of selecting and 

defining the structure of the statistical model that will be used to analyse data [15]. Thus, the structural formulation of the model 

used in this study is derived as follows: suppose we let be the log return of an interest rate at time index t. 

 

RITRT = Log (
Interestt

Interestt−1

) x100 

 

Where  Interestt is the interest rate at present (t) and  Interestt−1 is the interest rate at the previous time (t − 1), and in the 

volatility study rt is either taken as serially uncorrelated or with minor lower-order serial correlations, but it is a dependent 

series. The conditional mean and variance of  rt given the information set available at the time tt−1  as  It−1 are specified as 

thus:  

 

μ
t

= E(rt/It−1) 
 

σ2 = Var(rt/It−1) = E[(rt − μ
t
)2/It−1]  

                    

Since the serial dependence is weak, we can say that it follows a simple time series model, such as a stationary ARMA (p, q) 

model. The model becomes:   

 

 rt = μ
t

+ et 
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μ
t

= c + ∑ φ
i
rt−1

p
i=1 − ∑ θi

q
i=1 et−1      

     

Where p and q are non-negative integers and et are innovations or error terms. This is the mean equation for. The order (p, 

where p and q are non-negative integers and et are innovations or error terms,et~N(0,σt
2). This is the mean equation for rt. The 

order (p, q) of an ARMA model may depend on the frequency of the return series. The variance can be specified as:  

 

σt
2 = Var(rt/It−1) = Var(et/It−1)   

   

2.2. ARCH Model 

 

One of the key assumptions underlying least squares regression is homoscedasticity, which means that the variance of errors 

remains constant across all observations. However, when this assumption is violated, while the estimates remain unbiased, they 

no longer yield the minimum variance estimates. This results in misleadingly narrow standard errors and confidence intervals, 

creating a false sense of precision. To address this issue, ARCH and related models step in by explicitly modelling the volatility 

within the framework itself, thus correcting the limitations of the least squares approach. The ARCH models, as introduced by 

Engle [10] and further developed by Tsay [11], consist of both mean and volatility equations, and are formulated as follows: 

 

rt = μ
t

+ etet = σt ∈t, , σt
2 = α0 + ∑ αi

p
i=1 et−i

2         

 

σt
2 = α0 + ∑ αi

p
i=1 et−i

2 +∈t, t = p + 1, . . . . . . . . . . , T      

 

where etdenotes the error term, and T is the sample size. This is called the ARCH (p) model. The next step is to check the 

ARCH effects by using the residuals of the mean equation. For us to do that, we apply the usual Ljung-Box statistics Q(p) to 

the {et
2} series or apply white’s test of significance of   αi = 0(i = 1, . . . . . . . . , P) by F-statistic under the null hypothesis  given 

as  Ho :  α1 = ... = αp = 0.This F-statistic is distributed as χ2 distribution. If ARCH effects are found to be significant, we can 

use the PACF of et
2to determine the ARCH order. After specifying the volatility model, we jointly estimate the mean and 

volatility models. Lastly, we evaluate the fitted model and refine it further. The standardised residuals êt =
et

σ
 can be seen to 

check the adequacy of a fitted ARCH model. We can evaluate the QQ plots of êt and et
2to check the validity of the mean and 

variance equations, respectively. After determining the model's parameters, predictions can be made. 

 

2.3. GARCH Model 

 

Bollerslev [12] proposed a useful extension to the ARCH model, otherwise referred to as the Generalised Autoregressive 

Conditional Heteroskedasticity (GARCH) model. Bollerslev [12] and Tsay [11] respectively opined that   the et obtained  

follows a GARCH (p, q) model, given that; 

 

et = σt ∈t; σt
2 = α0 + ∑ αi

p
i=1 et−i

2 + ∑ β
j
σt−1

2         

 

In addition to ARCH conditions, we also have βj ≥0, and ∑ (αi + βj
max(p,q)
i=1 ) < 1. The restriction on αi + βj implies that the 

unconditional variance of etis finite, whereas its conditional variance σt
2evolves. The αiand βjare ARCH and GARCH 

parameters, respectively. Like ARCH models, GARCH models also exhibit volatility clustering, a leverage effect, and heavier 

tails. Specifying the order of a GARCH model is not straightforward, and most applications use only lower-order GARCH 

models. Two types of GARCH were considered under the symmetric GARCH framework, based on their error distribution 

assumption, and they include GARCH. The GARCH (p, q) model in its generalised form is written as: thus: 

 

σt
2 = w + ∑ αi

q
t=1   εt−1

2 + ∑ β
j

p
j=1 σt−j

2    

 

Such that P is the order of the GARCH terms, σ2 and q is the order of the ARCH term εt−1
2  where, αiand βj>.0;   2

t is the 

conditional variance and εtdisturbance term, the reduced form of the equation, i.e., GARCH(1,1), is given as thus:   

 

 σt
2 = w + αiεt

2 + β
j
σt−1

2  

 

Where w, α, and βjd  are non-negative parameters to be estimated, and α + β < 1 to be stationary.  

 

Tsay [11] emphasised that the primary purpose of an asymmetric GARCH model is to address the shortcomings found in 

symmetric GARCH models. These shortcomings include the inability of symmetric models to capture the leverage effect, the 
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differential impact of good and bad news, and long memory. To overcome these limitations, this study considers two types of 

asymmetric GARCH models: the EGARCH and TGARCH models. The Exponential GARCH (EGARCH) model can be 

specified generally as follows:  

 

Log (t
2) = 0 +   2

2

1

1
i2

1

1

11

 log ; jt

p

jt

t

it

t

q

i 











 













   

  

The reduced form of the generalised EGARCH will be stated as thus:  

 

Log (t
2) = β0 + 1  2
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Where 1; γi0 εt−10 and  εt−10 and εt−1 0  simply  good news and bad news, whereas the total effects are given as  (1 +γi) 

|εt−1|and (1-γi)|εt−1| respectively. γi< 0 is the expectation when bad news has a higher impact on volatility. Similarly, the 

EGARCH model usually has variance stationarity when ∑ β,
p
j=1 < 1, and then the null hypothesis will be rejected. When  γi = 

0, it shows the presence of the leverage effect. According to Atoi [6], this means that bad news has a stronger effect on good 

news than the volatility of interest rate return. The threshold GARCH (TGARCH) model; this is generally specified as 

TGARCH (p,q):  

 

  σt
2 = β

0
+ ∑ αi εt−1

2 + ∑ yi
q
i=1

q
i=1 It−i εt−1

2 + ∑ β
j
σt−j

eρ

j=1    

 

Where It-1 = 1 if εt−1
2 < 0 and O otherwise  εt−1

2 > 0  Implies good news where  εt−1
2 < 0 bad news, and according to Atoi [6], 

there exist two shocks of equal size with differential effects on the conditional variance. He further opined that bad news 

increases volatility when Ii > 0, which means the existence of the leverage effect in the jth order; and when Ii > 0, the news 

impact is asymmetric.  

 

2.4. Source of Data  

 

This study utilises the monthly interest rate for Nigeria, sourced from and extracted from the Central Bank of Nigeria's online 

website (www.cbn.ng). The variable was the interest rate, and it covered the period from July 1997 to July 2024. The data were 

analysed with the aid of STATA and EViews software, version 10.   

 

2.5. Model Estimation Technique/Procedure 

 

The procedure for estimating the GARCH model in this study follows a structured econometric analysis approach, starting with 

a detailed examination of the time series data. The first step involves assessing the behaviour of the data through visual 

inspection with a time series plot, which helps identify trends, patterns, and irregularities in the data over the specified time 

period. This is followed by the estimation of an ARMA (Autoregressive Moving Average) model, where the residuals are 

extracted from an ordinary least squares (OLS) regression to evaluate the conditional mean and variance. The ARMA model is 

represented as a dynamic equation that captures the relationship between past values and errors. Once the ARMA model is 

established, the next phase of the analysis focuses on volatility clustering, which is a common feature in financial time series. 

This is assessed by transforming the residuals obtained from the ARMA model and plotting them to identify periods of high 

and low volatility. The presence of volatility clustering helps in understanding how volatility persists over time and justifies 

the use of GARCH-type models for further analysis. 

 

Subsequently, a Normality Test is performed to examine whether the residuals follow a normal distribution. The Jarque-Bera 

test, which is based on skewness and kurtosis, is used to test for deviations from normality. If the normality test fails, indicating 

that the residuals are not normally distributed, the study follows the recommendation by Kwiatkowski et al. [4] to use GARCH 

models with alternative error distributions to better capture the non-normal characteristics of the data. The presence of 

heteroskedasticity, a condition where the variance of the residuals changes over time, is then tested using the ARCH effects 

test. Engle [10] LaGrange Multiplier (LM) test is applied, where the squared residuals from the ARMA model are regressed on 

their own lags. The test statistic, based on the number of observations multiplied by the R-squared value (n × R²), is compared 

to a Chi-square distribution with q degrees of freedom. A significant result (n*R² > Chi-square) would indicate the presence of 

ARCH effects, confirming that the data exhibit time-varying volatility—a key feature that GARCH models are designed to 

capture. After verifying the presence of ARCH effects, the study proceeds to estimate the parameters of the GARCH model. 
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This includes symmetric models, such as the GARCH (p, q) model developed by Bollerslev [12], which captures the 

relationship between past squared errors and conditional variance.  

 

The study also explores asymmetric models, such as the EGARCH (Exponential GARCH) model by Epaphra [8] and the 

TGARCH (Threshold GARCH) model by Fleming and Klagge [9], both of which are designed to account for asymmetric 

volatility reactions to good and bad news, as well as leverage effects. Model selection is performed using the Akaike 

Information Criterion (AIC), a method commonly employed to compare the fit of competing models. These criteria help identify 

the most appropriate model by penalising models for complexity, with the AIC being defined as -2 times the log-likelihood 

function plus 2 times the number of parameters. The SIC, which imposes a heavier penalty for additional parameters, is also 

considered, following the suggestion of Ehrmann and Fratzscher [7], who recommend using SIC to avoid overfitting and to 

select a more parsimonious model. Through these steps, the study ensures a comprehensive procedure for estimating and 

selecting the most appropriate GARCH model to analyse the volatility of Nigeria’s interest rate returns, considering key 

econometric tests and model selection criteria. 

 

3. Results 

 

Figure 1 shows the raw interest rate data plotted against years (in months) from 1990 to 2025.  The graph illustrates that interest 

rates have fluctuated significantly over time, with notable peaks in 1995 and 2022.  Between 2008 and 2015, there was a 

dramatic decline, followed by an improvement.  The rate reached its lowest point around 2020 and then rebounded. 

 

 
 

Figure 1: Raw interest rate data plotted against years (months) 

 

Figure 2 illustrates the returns on interest rate data over the same period, demonstrating how the rates fluctuate and their 

associated volatility.  The graph shows abrupt rises and falls, indicating that there were periods of significant change.   

 

 
 

Figure 2: Returns on interest rate data plotted against years (months) 

 

Around 2022, there are significant gains and losses, which align with major market changes.  The returns plot illustrates how 

interest rates fluctuate over time in a dynamic and unstable manner. 
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Table 1 presents the descriptive statistics for interest rate returns, indicating a negative mean (-0.000376) and skewness (-

0.945294), which suggests left-skewed data with elevated kurtosis (10.8268).  The Jarque-Bera (JB) value of 648.33 and the p-

value of 0.000 indicate that the data is not normally distributed.   

 

Table 1: Summary descriptive statistics for interest rate return 

 

Mean Median Min Max StdD. Skewnes Kurtosis JB P-value 

-0.000376 0.002331 -0.731762 0.446647 0.116447 -0.945294 10.8268 648.3318 0.000 

 

The normality plot in Figure 3 indicates that the distribution is leptokurtic, meaning that most values are close to the mean, 

while a few are far away from it. 

  

  

 

Figure 3:  Normality plot of the returns on interest rate 

 

The ARMA Model as obtained from the linear regression model in equation (3.1), we have; 

 

Interate =0.205448        +    0.965 02Interatet-1 +    t   

               (0.060)   (0.000) 

 

3.1. Test for Heteroskedasticity (ARCH Effect) 

 

Table 2: Testing for the presence of an ARCH effect 

 

Estimator Lag 1 

F-statistic  61.139 

Prob F (1,237) 0.0003 

n*R2 49.012 

X2(1,1) 0.00 
  Source: Researcher’s Computations,2024 

 

3.2. Different Estimated GARCH Models 

 

3.2.1. ARCH (1,1) 

 

μ̂ = -0.5125, 

 

σt = 58.2190 + 0.9549μ̂
t−1
2

 

 
p value = (0.000)  ( 0.000)                         

 

AIC=7.5527 

 

0
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3.2.2. ARCH (2,2) 

 

μ̂ = −0.58519,  

 

σt = 50.977 + 0.705μ̂
t−1
2 + 0.1799μ̂

t−2
2

 

 
p value = (0.000)  ( 0.00 0)  (0.0586)          

 

AIC=7.5277 

 

3.2.3. GARCH (1, 1) 

 

μ̂ = -0.3275- 0.1434μ̂
t−1
2

 

 

σ̂t
2 = 9.9253 + 0.26094μ̂

t−1
2 + 0.7028σt−1

2  

 
p value = (0.000)  ( 0.000)  (0.000)        

 

AIC= 7.5102 

 

3.2.4. GARCH (2,2) 

 

μ̂ =  -0.3213 - 0.0627μ̂
t−1
2

 

 

σ̂t
2 = 1.672 + 0.6793μ̂

t−1
2 -0.6286μ̂

t−2
2 + 1.0912σt−1

2 − 0.1413σt−2
2  

 

 p value = (0.0169)  ( 0.000)  (0.000)  (0.000)      (0.1853)    
 

AIC= 7.4687 

 

3.2.5. EGARCH (1,1) 

 

μ̂ = -0.3093 - 0.14759μ̂
t−1
2

  

       

Log ( σt
2) = 0.1996 + 0.3004 |

μ
t−1
2

σt−1
2 | − 0.1228 |

μ
t−1
2

σt−1
2 | + 0.94144 log (σt−1

2
) 

 
p value = (0.1219)    ( 0.5563)       (0.0001)        (0.000),

 
 

AIC=    7.477558

  

 

 

3.2.6. EGARCH (2,2) 

 

μ̂ = -0.3845 - 0.1748μ̂
t−1
2

                         

 

Log ( σt) =2.1315  + 0.9032 |
μ

t−1
2

σt−1
2 | + 0.4873 |

μ
t−1
2

σt−2
2 | + 0.3209 |

μ
t−2
2

σt−2
2 | − 0.2364 log(σt−1

2 ) + 0.5473 log(σt−2
2 ) 

 
p value =, ( 0.5563)    (0.000)           (0.0001)         (0.000)       (0.4238)                   (0.000) 

 

3.2.7. TGARCH (1,1) 

 

When p = 1 and q = 1, the GJR-GARCH (p,q) model is written as follows: 

 

μ̂ = -0.2876 -0.2127μ̂
t−1
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σt
2 = -0.2876 + 0.0351εt−1

2 + 0.2378σt
2 + 0.8024It−1εt−1

2  

 
p value = (0.1219), ( 0.5563), (0.000), (0.0001),

  
     

It−1 = {

1  when  ε t−1 < 0

0 when ε t−1 ≥ 0
  

 

AIC=7.4783 

 

3.2.8. TGARCH (2,2) 

 

μ̂ = 0.7040 -0.0197μ̂
t−1

  

         

σt
2 = 3.5986 + 0.3519εt−1

2 − 0.0301It−1εt−1
2 -0.4905εt−2

2 +  0.3922It−1εt−2
2 + 0.9157σt−1

2 + 0.00193σt−2
2  

 
p value = (0.1219), ( 0.5563), (0.000), (0.0001), (0.000), (0.4238), (0.000), (0.000), (0.0000), (0.8163) 

 

It−1 = {

1  when  ε t−1 < 0

0 when ε t−1 ≥ 0
 

 

AIC=7.290230 

 

Table 3 shows the model fitness and selection outcomes for several ARCH, GARCH, EGARCH, and TGARCH models based 

on their AIC values.  The TGARCH (2,2) model had the lowest AIC value of 7.290 among all the models tested.  This indicates 

that the TGARCH (2,2) model is the most suitable for interest rate returns. 

 

Table 3: Model fitness and selection 

 

MODEL AIC Least AIC 

ARCH (1,1) 7.553  

ARCH (2,2) 7.528  

GARCH (1,1) 7.510  

GARCH (2,2) 7.469  

EGARCH (1,1) 7.478  

EGARCH (2,2) 7.415  

TGARCH (1,1) 7.478  

TGARCH (2,2) 7.290 7.290 

 

Based on the minimum as well as the least Deebom et al. [14] information criterion, the best considered model was TGARCH 

(2,2) in the Generalised error distributional assumption, and this can be represented as follows: 

 

TGARCH (2,2) 

 

μ̂ = 0.7040 -0.0197μ̂
t−1

  

 

σt
2 = 3.5986 + 0.3519εt−1

2 − 0.0301It−1εt−1
2 -0.4905εt−2

2 +  0.3922It−1εt−2
2 + 0.9157σt−1

2 + 0.00193σt−2
2  

 
p value = (0.1219), ( 0.5563), (0.000), (0.0001), (0.000), (0.4238), (0.000), (0.000), (0.0000), (0.8163) 

         

It−1 = {

1  when  ε t−1 < 0

0 when ε t−1 ≥ 0
 

AIC=7.290230 
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Model diagnostics are performed to determine whether the selected model is suitable for prediction and forecasting. This 

confirmatory test includes the Test for Presence of ARCH Effect, the Test for Serial Correlation, and a test for normality using 

the QQ-plot for residuals of the selected model. Additionally, an investigation was conducted to examine the presence of ARCH 

effects in the selected estimated model, using the ARCH-LM test. Table 4 contains the results obtained using the ARCH-LM 

test for the ARCH effect. As observed, the n*X2>f-statistic indicates that the null hypothesis of no ARCH effect should be 

accepted at a 5% level of significance. 

 

Table 4: Heteroskedasticity test for the best fitted GARCH (2,2) model 

 

Models Heteroskedasticity Test: ARCH Lag 5 Lag 10 

TGARCH (2,2)  F-statistic 1.151686 1.510544 

Prob. F (1,5,237, 229) 5.764434 14.83710 

 

The result in Figure 4 indicates that there is no serial correlation, as the probability (p-values) is all greater than the standard 

0.05 level of significance. Hence, there is no serial correlation. The test for Serial Correlation is done by checking the 

correlogram of the residual squares. 

 

 
 

Figure 4: Correlogram of standardised residuals square 

 

The Q-Q Plots for the Residuals are done to confirm if the data set used in the estimation exhibits the characteristics of data 

drawn from a normal distribution. Additionally, the diagram in Figure 5 shows that the line of quantile and normality lies 

straight on top of each other, indicating that the model is well-fitted. This result aligns with Atoi's [6] findings in his test for 

the volatility of stock markets using the GARCH model.   

 

  
 

Figure 5: QQ-plot for residuals of normal distribution 
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4. Results and Discussion 

 

The study utilises Nigeria's interest rate data, extracted from deposit money banks, as reported on the Central Bank of Nigeria 

(CBN) online statistical database. The data spans from July 1997 to July 2024. Conditional variance models were fitted to the 

conditionally compounded monthly interest rate data. In total, eight different GARCH models were estimated, assuming 

normally distributed errors. Several conditions were considered when estimating the model, and these were incorporated into 

the estimation technique. Some of these conditions include time plots, summary descriptive statistics, tests for ARCH effects, 

model estimation and selection, and diagnostic tests. Figure 1 shows the dynamics of the time plot for monthly interest rates 

from 1997 to 2024. The graph reveals that the variable exhibits trends, with an upward projection followed by a decline in 2001 

and a subsequent rise in 2003. The fluctuations in the series continue across the years. Similarly, Figure 2 shows evidence of 

clustering in the time plot of the returns series, with sharp increases followed by sharp decreases, indicating instability in the 

rate of returns on interest rates over the study period. These results are consistent with the findings of Meher et al. [1], who 

investigated oil price macroeconomic volatility in Nigeria and found volatility clustering in oil price returns. Similarly, the 

interest rate returns variable in this study was subjected to descriptive tests, and the results indicated that the variable did not 

meet the assumptions of a normally distributed variable. 

 

Table 1 presents summary statistics for interest rate returns from July 1997 to July 2024. The estimated mean (-0.000376) has 

a negative sign, indicating that the variable is negatively mean-reverting in nature. The standard deviation (0.116447) measures 

the degree of risk associated with the variable. A higher standard deviation implies greater volatility persistence and associated 

risk. The 117.8409% difference between the minimum and maximum returns on interest rates shows the level of variation and 

the fairness of returns within the sampled period. The skewness coefficient (-0.945294) is negative, indicating that the variable 

is negatively skewed to the left, a common feature of fair returns. Kurtosis (10.82680), which is greater than three, suggests 

that the variable does not exhibit the characteristics of normally distributed data. The Jarque-Bera statistic (648.3318), with a 

corresponding probability value of 0.0000, leads to the rejection of the null hypothesis of normality and the acceptance of the 

alternative hypothesis. As suggested by Mandelbrot [2], it is necessary to use alternative statistics when modelling the volatility 

of interest rate returns. Thus, the study employs GARCH family models, based on the assumption of a normal error distribution, 

with a fixed degree of freedom incorporated into the models. The variable under investigation was further subjected to an Auto-

Regressive Moving Average (ARMA) model to obtain the residuals from the estimation of the returns series. The results show 

that the intercept (0.205448) is significant at the 10% level, and the ARCH component (0.965) is significant at the 5% level, 

like the findings of Eke [3] on oil price-macroeconomic volatility in Nigeria. 

 

In another development, Table 2 shows the test for heteroskedasticity (ARCH effect) of the residuals obtained from the model 

in equation (4.1). The test indicates the persistence of ARCH effects. The F-statistic (61.139) is greater than its corresponding 

chi-square statistic (49.012), resulting in the rejection of the null hypothesis and the acceptance of the alternative hypothesis. 

This confirms the presence of ARCH effects in the return series of interest rates, supporting the assertion by Kwiatkowski et 

al. [4] that variables with such effects can be estimated using GARCH models. As previously mentioned, interest rate returns 

exhibit persistent shocks and continuous volatility clustering. To capture these volatility characteristics, eight different GARCH 

models were used in the estimation. These models were estimated with normal error distribution assumptions to better 

understand the specific behaviour of interest rate returns under different error distribution assumptions. The result in model 

(4.1) confirms that time-varying volatility includes a constant (58.2190) and an ARCH component that depends on past errors. 

The ARCH effect is statistically significant at the 5% level, and since the constant is not greater than one but lies between zero 

and one, the ARCH effect is not explosive. The model suggests an ARCH (1) effect, with an AIC of 7.5527. Model (4.2) shows 

that time-varying volatility includes a constant (50.977) and ARCH components that depend on immediate and second-past 

errors. The ARCH effects are statistically significant at the 5% level, and since the constant values lie between zero and one, 

the ARCH effect is not explosive.  

 

The model suggests an ARCH (2) effect, with an AIC of 7.5527. Both models indicate positive variance, suggesting that shocks 

from previous periods result in greater initial innovations in absolute terms, which means smaller ARCH effects in the future. 

The results obtained in models (4.1) and (4.3) confirm the underlying assumptions of the ARCH effect as suggested by Engle 

[10] in his study on inflation in the U.K. Model (4.3) contains two components: the mean and the variance components. The 

intercept in the variance component is positive and statistically significant at the 5% level. Similarly, the ARCH components 

are positive and statistically significant at the 5% level, indicating that the interest rate return of the preceding month has a 

statistically significant influence on the interest rate return of the current month. This confirms that interest rate volatility is 

influenced by its own positive ARCH and GARCH components. The model estimates an Akaike Information Criterion (AIC) 

of 7.5102 and 96.37% volatility persistence. The first-order ARCH component in the variance component is positive and 

statistically significant at the 5% level. In comparison, the second-order ARCH component is negative but also statistically 

significant at the 5% level. This suggests that the preceding month's interest rate return has a positive impact on the current 

month's return, whereas the second-order return has a negative impact. The AIC for this model is 7.4687, and the degree of 

volatility persistence for the first and second orders is 177.05% and -76.99%, respectively. This shows that volatility persistence 
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decreases in the second-order estimation, as indicated by the negative second GARCH coefficient. These results are consistent 

with Gujarati's [5] findings on stochastic volatility in interest rate models. 

 

The EGARCH (1, 1) model, shown in model (4.5), estimates the volatility of interest rate returns. The coefficient of the ARCH 

term is positive but not statistically significant. The asymmetric term is negative and statistically significant at the 5% level. 

This suggests that the relationship between past returns and future volatility is positive, and that higher leverage effects due to 

negative returns will likely lead to lower interest rates, reflecting a higher debt-to-equity ratio. The model’s AIC is 7.4776, with 

a volatility persistence degree of 124.184%. The EGARCH (2, 2) model, shown in model (4.6), estimates volatility with 

significant positive coefficients for the ARCH terms and the asymmetric term. The first-order GARCH term is negative and 

non-significant, while the second-order GARCH term is positive and statistically significant at the 5% level. The model 

estimates 66.68% volatility persistence in the first order and 103.46% in the second order, suggesting that higher-order models 

capture higher levels of volatility persistence. The AIC for this model is 7.3338. In the ARCH, the coefficients are positive but 

not statistically significant, indicating the presence of ARCH effects. Despite this, a leverage effect is observed, where negative 

news has a greater impact on volatility than positive news. The asymmetric term is positive and statistically significant at the 

5% level, with an AIC of 7.4783. Finally, model 4.8 shows that the ARCH coefficient in the first-order model is positive but 

not statistically significant, while in the second-order model, it is negative and statistically significant. This confirms the 

presence of ARCH effects in the second-order TGARCH model. The leverage effect suggests that bad news has a greater impact 

on volatility than good news, with the second-order model indicating the opposite. The AIC for this model is 7.4783, consistent 

with Gujarati [5]. 

 

 H01: There is no presence of ARCH effect on monthly data returns on Nigerian Interest rate between 1997 and 2024. 

 

To test H01, we investigate if there is an ARCH effect both P(F) and P (X2), [where P(F) and P(X2) are tail probabilities]. The 

p-value is less than 0.05, the level of significance. This is from the Heteroskedasticity test in Table 2. 

 

 H02: There is no general comparative difference between the performance of the first and second Order GARCH models 

in modelling the returns on the monthly interest rate between July 1997 and July 2024. 

 

From the values of the AIC for the various models, we have the following results: for the ARCH models, the AIC values for 

ARCH (1,1) and ARCH (2,2) are -7.553 and -7.528, respectively; for the GARCH models, GARCH(1,1) and GARCH(2,2) 

yield AIC values of -7.510 and -7.469, respectively; for the EGARCH models, EGARCH(1,1) and EGARCH(2,2) have AIC 

values of -7.478 and -7.415, respectively; and for the TGARCH models, TGARCH(1,1) and TGARCH(2,2) have AIC values 

of -7.478 and -7.290, respectively. Therefore, the model with the lowest AIC value is TGARCH (2,2). These results indicate 

that the TGARCH (2,2) model fits the volatility model better than the first-order GARCH model. Based on these findings, we 

reject the null hypothesis (H0) and uphold the view that there is a significant difference in performance between the first- and 

second-order GARCH models in modelling the returns on monthly interest rates from July 1997 to July 2024. 

 

5. Conclusion 

 

This study examines the estimation ability and performance of first- and second-order univariate GARCH models in modelling 

the conditional variance of interest rates. It provides some important insights into modelling the volatility of interest rate returns. 

The results indicate that the second-order TGARCH model (2,2) provides the best fit to the data. Model selection was based on 

the Akaike Information Criterion (AIC), and model diagnostics were performed using ARCH effect tests, QQ plots, and serial 

correlation tests to ensure robustness. From the results, we can conclude that those who obtained loans from banks during the 

study period had a higher probability of gaining than losing. This is because negative shocks tend to have a disproportionate 

effect on future volatility, and the second-order TGARCH model takes these asymmetry behaviours into account. For example, 

during an economic downturn, an unexpected cut in interest rates may lead to higher-than-expected volatility due to uncertainty 

about future economic conditions. Therefore, given the risks associated with borrowing from depository banks, investing in 

stocks, and pricing assets with corresponding interest income, financial analysts, investors, companies, and governments are 

advised to exercise caution when engaging in any business or financial activity involving interest rates. 
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