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Abstract: This study examines the modelling of volatility in Nigeria's interest rate returns, comparing various GARCH models.
The data used in the study were extracted from the Central Bank of Nigeria’s (CBN) online statistical database on deposit bank
interest rates. Both first- and second-order GARCH models were fitted to the data using EViews version 10. The results
indicated that the second-order TGARCH (2,2) model provided the best fit for the data. Model selection was based on the
Akaike Information Criterion (AIC), and model diagnostics were conducted using the ARCH effect test, QQ-plot, and serial
correlation test to ensure robustness. The study's findings revealed a higher probability of gains than losses for individuals who
obtained loans from banks during the study period. However, the variables analysed in this study exhibited extreme volatility,
which suggests that users of interest rates were exposed to considerable risks. This means that bankers, customers of deposit
money banks, and investors should expect rewards for holding such a risky asset. It was concluded that ARCH-GARCH models
not only estimate expected returns on interest rates but also assess investors' reactions to risk, as revealed in the leverage effects
captured in the second-order TGARCH (2,2) model, which was provided as the best fit for the data. Based on these findings,
the study recommends further investigation into the volatility of interest rates.
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1. Introduction

Fluctuations in interest rate returns in the banking sector are a critical factor in determining financial stability, as they impact a
bank's ability to manage risks, set appropriate interest rates, and adapt to economic fluctuations. The volatility of interest rate
returns plays a crucial role in shaping the financial landscape of any economy, and this is especially true for banking sectors in
emerging markets such as Nigeria. As the global financial environment becomes increasingly interconnected, the volatility of
interest rates has the potential to create both risks and opportunities for banks, making the accurate modelling of this volatility
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essential for effective risk management, policy formulation, and investment decision-making. In Nigeria, where banks operate
in a complex environment characterised by volatile exchange rates, inflationary pressures, and cyclical regulatory reforms,
accurately modelling interest rate volatility is crucial for understanding market behaviour and mitigating potential risks [9].
However, despite the growing importance of understanding interest rate dynamics, the existing literature on modelling volatility
of bank interest rate returns in Nigeria remains limited and often inadequately addressed. Many studies to date have focused on
stock market volatility or broad macroeconomic variables, leaving a significant gap in exploring how volatility in interest rate
returns specifically affects banks in Nigeria. Financial systems face unique challenges, such as inflation, interest rate volatility,
and regulatory uncertainty. Furthermore, few of these numerous studies have examined interest rate volatility at the global
level, and there is a notable gap in research that focuses specifically on the Nigerian banking sector. Existing studies often focus
on stock market volatility, exchange rates, or general macroeconomic factors, but do not explore how fluctuations in interest
rate yields specifically affect Nigerian banks. Furthermore, many studies that attempt to model financial volatility in Nigeria
primarily rely on first-order GARCH models and traditional methods, which may not capture the dynamic and nonlinear nature
of interest rate volatility in emerging markets like Nigeria.

The family of generalised autoregressive conditional heteroskedasticity (GARCH) models has gained popularity in financial
econometrics for its ability to model time-varying volatilities in financial data [12]. However, despite its widespread use, there
is limited empirical evidence on which variant of the GARCH model best captures the volatility of Nigerian banks’ interest
rate returns. Most studies applying GARCH models in the Nigerian context tend to focus on other financial variables, such as
crude oil prices, stock prices, or exchange rates, leaving a large gap in understanding the performance of these models when
applied to interest rate data [13]. Furthermore, the choice of GARCH model — whether standard GARCH, exponential GARCH
(EGARCH), or first- and second-order threshold GARCH (TGARCH) — has not been rigorously compared in the context of
Nigerian bank interest rates, limiting the ability of financial analysts to choose the most appropriate instrument to forecast
fluctuations in this sector [1]. This study aims to fill this gap by systematically comparing the effectiveness of different GARCH
models in modelling the volatility of Nigerian banks’ interest rate returns [8]. By evaluating models such as standard first- and
second-order GARCH, EGARCH, and TGARCH, the research will identify the approach that provides the most accurate and
reliable forecasts of interest rate volatility, thereby providing valuable insights into the risk management strategies of Nigerian
banks. The specific objectives of the study are to analyse the dynamics of Nigerian banks’ interest rate volatility, compare the
forecasting performance of different GARCH models, and recommend the most effective model for use in this context. The
significance of this research lies in its potential to improve the accuracy of financial forecasts and enhance decision-making
within the Nigerian banking sector. By providing a better understanding of interest rate volatility, the study will support the
formulation of more robust risk management strategies, ultimately contributing to the stability and growth of the Nigerian
financial system.

2. Methodology

2.1. Model Specification

Modelling involves identifying the key features of the real-world economy and making appropriate simplifications or
assumptions to effectively capture those features. Model specification in statistical modelling is the process of selecting and
defining the structure of the statistical model that will be used to analyse data [15]. Thus, the structural formulation of the model

used in this study is derived as follows: suppose we let be the log return of an interest rate at time index t.

Interest,

RITRT = Log( )xlOO

Interest,_4
Where Interest; is the interest rate at present (t) and Interest,_, is the interest rate at the previous time (t — 1), and in the
volatility study r, is either taken as serially uncorrelated or with minor lower-order serial correlations, but it is a dependent

series. The conditional mean and variance of r, given the information set available at the time t,_; as I,_, are specified as
thus:

M = E(re/li-1)
6® = Var(r¢/le—;) = E[(ry — Ht)z/lt—ﬂ

Since the serial dependence is weak, we can say that it follows a simple time series model, such as a stationary ARMA (p, q)
model. The model becomes:

Iy = |+ e
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Where p and g are non-negative integers and et are innovations or error terms. This is the mean equation for. The order (p,
where p and q are non-negative integers and et are innovations or error terms,e,~N(0,62). This is the mean equation for r,. The
order (p, q) of an ARMA model may depend on the frequency of the return series. The variance can be specified as:

of = Var(ry/l;_;) = Var(e,/I;_;)
2.2. ARCH Model

One of the key assumptions underlying least squares regression is homoscedasticity, which means that the variance of errors
remains constant across all observations. However, when this assumption is violated, while the estimates remain unbiased, they
no longer yield the minimum variance estimates. This results in misleadingly narrow standard errors and confidence intervals,
creating a false sense of precision. To address this issue, ARCH and related models step in by explicitly modelling the volatility
within the framework itself, thus correcting the limitations of the least squares approach. The ARCH models, as introduced by
Engle [10] and further developed by Tsay [11], consist of both mean and volatility equations, and are formulated as follows:

— — 2 _ P 2
Iy = W+ e =0p €, ,0f =0y + Dicq % €
of =0+ o 06t +ELt=P+ L, ,T

where e denotes the error term, and T is the sample size. This is called the ARCH (p) model. The next step is to check the
ARCH effects by using the residuals of the mean equation. For us to do that, we apply the usual Ljung-Box statistics Q(p) to
the {e?} series or apply white’s test of significance of a; = 0(i=1,........ , P) by F-statistic under the null hypothesis given
as Ho: ol =..=op =0.This F-statistic is distributed as 2 distribution. If ARCH effects are found to be significant, we can
use the PACF of e?to determine the ARCH order. After specifying the volatility model, we jointly estimate the mean and
volatility models. Lastly, we evaluate the fitted model and refine it further. The standardised residuals &, = % can be seen to
check the adequacy of a fitted ARCH model. We can evaluate the QQ plots of & and e?to check the validity of the mean and
variance equations, respectively. After determining the model's parameters, predictions can be made.

2.3. GARCH Model

Bollerslev [12] proposed a useful extension to the ARCH model, otherwise referred to as the Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) model. Bollerslev [12] and Tsay [11] respectively opined that the e, obtained
follows a GARCH (p, q) model, given that;

_ L2 P 2 2
ey = Oy € 0f = 0 + Zi=1 0 ec_i + X Bjct—l

In addition to ARCH conditions, we also have Bj >0, and X"%*®P(q; + B;) < 1. The restriction on a; + B; implies that the
unconditional variance of e.is finite, whereas its conditional variance cfevolves. The a;and B;are ARCH and GARCH
parameters, respectively. Like ARCH models, GARCH models also exhibit volatility clustering, a leverage effect, and heavier
tails. Specifying the order of a GARCH model is not straightforward, and most applications use only lower-order GARCH
models. Two types of GARCH were considered under the symmetric GARCH framework, based on their error distribution
assumption, and they include GARCH. The GARCH (p, q) model in its generalised form is written as: thus:

— q p 2
G% =w+ Zt:l Q4 g%—l + Zj=1 Bj Gt—j

Such that P is the order of the GARCH terms, ¢* and q is the order of the ARCH term &f_; where, ajand §;>.0; Ot % s the
conditional variance and e disturbance term, the reduced form of the equation, i.e., GARCH(1,1), is given as thus:

o2 =w+o;ef + B].Gf_l
Where w, o, and ;d are non-negative parameters to be estimated, and o + < 1 to be stationary.

Tsay [11] emphasised that the primary purpose of an asymmetric GARCH model is to address the shortcomings found in
symmetric GARCH models. These shortcomings include the inability of symmetric models to capture the leverage effect, the
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differential impact of good and bad news, and long memory. To overcome these limitations, this study considers two types of
asymmetric GARCH models: the EGARCH and TGARCH models. The Exponential GARCH (EGARCH) model can be
specified generally as follows:

&1 Eia
2 2
O,

Log (o) = Bo+ i {ai
1=1

+7

}+Z:):ﬂ; log (af_j)

1 O

The reduced form of the generalised EGARCH will be stated as thus:

Sia

2

&

Log (o) = Po+ o -+, log (Gé)

O
t-1

+7i

Ot1

Where a1 y;>0&—1>0and &._,>0and g,._;< 0 simply good news and bad news, whereas the total effects are given as (1 +y;)
lec—1land (1-y;)|e.—1| respectively. y;< 0 is the expectation when bad news has a higher impact on volatility. Similarly, the
EGARCH model usually has variance stationarity when ij:1 B,< 1, and then the null hypothesis will be rejected. When vy; =

0, it shows the presence of the leverage effect. According to Atoi [6], this means that bad news has a stronger effect on good
news than the volatility of interest rate return. The threshold GARCH (TGARCH) model; this is generally specified as
TGARCH (p,q):

— q q
G% - BO + 21:1 04 8?—1 + 2121 Yi I 8%—1 + Z]P:1 B].G?_]-

Where l.;=1if 2, < 0 and O otherwise €2, > 0 Implies good news where €2, < 0 bad news, and according to Atoi [6],
there exist two shocks of equal size with differential effects on the conditional variance. He further opined that bad news
increases volatility when I; > 0, which means the existence of the leverage effect in the jth order; and when li > 0, the news
impact is asymmetric.

2.4. Source of Data

This study utilises the monthly interest rate for Nigeria, sourced from and extracted from the Central Bank of Nigeria's online
website (www.cbn.ng). The variable was the interest rate, and it covered the period from July 1997 to July 2024. The data were
analysed with the aid of STATA and EViews software, version 10.

2.5. Model Estimation Technique/Procedure

The procedure for estimating the GARCH model in this study follows a structured econometric analysis approach, starting with
a detailed examination of the time series data. The first step involves assessing the behaviour of the data through visual
inspection with a time series plot, which helps identify trends, patterns, and irregularities in the data over the specified time
period. This is followed by the estimation of an ARMA (Autoregressive Moving Average) model, where the residuals are
extracted from an ordinary least squares (OLS) regression to evaluate the conditional mean and variance. The ARMA model is
represented as a dynamic equation that captures the relationship between past values and errors. Once the ARMA model is
established, the next phase of the analysis focuses on volatility clustering, which is a common feature in financial time series.
This is assessed by transforming the residuals obtained from the ARMA model and plotting them to identify periods of high
and low volatility. The presence of volatility clustering helps in understanding how volatility persists over time and justifies
the use of GARCH-type models for further analysis.

Subsequently, a Normality Test is performed to examine whether the residuals follow a normal distribution. The Jarque-Bera
test, which is based on skewness and kurtosis, is used to test for deviations from normality. If the normality test fails, indicating
that the residuals are not normally distributed, the study follows the recommendation by Kwiatkowski et al. [4] to use GARCH
models with alternative error distributions to better capture the non-normal characteristics of the data. The presence of
heteroskedasticity, a condition where the variance of the residuals changes over time, is then tested using the ARCH effects
test. Engle [10] LaGrange Multiplier (LM) test is applied, where the squared residuals from the ARMA model are regressed on
their own lags. The test statistic, based on the number of observations multiplied by the R-squared value (n x R?), is compared
to a Chi-square distribution with g degrees of freedom. A significant result (n*R? > Chi-square) would indicate the presence of
ARCH effects, confirming that the data exhibit time-varying volatility—a key feature that GARCH models are designed to
capture. After verifying the presence of ARCH effects, the study proceeds to estimate the parameters of the GARCH model.
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This includes symmetric models, such as the GARCH (p, q) model developed by Bollerslev [12], which captures the
relationship between past squared errors and conditional variance.

The study also explores asymmetric models, such as the EGARCH (Exponential GARCH) model by Epaphra [8] and the
TGARCH (Threshold GARCH) model by Fleming and Klagge [9], both of which are designed to account for asymmetric
volatility reactions to good and bad news, as well as leverage effects. Model selection is performed using the Akaike
Information Criterion (AIC), a method commonly employed to compare the fit of competing models. These criteria help identify
the most appropriate model by penalising models for complexity, with the AIC being defined as -2 times the log-likelihood
function plus 2 times the number of parameters. The SIC, which imposes a heavier penalty for additional parameters, is also
considered, following the suggestion of Ehrmann and Fratzscher [7], who recommend using SIC to avoid overfitting and to
select a more parsimonious model. Through these steps, the study ensures a comprehensive procedure for estimating and
selecting the most appropriate GARCH model to analyse the volatility of Nigeria’s interest rate returns, considering key
econometric tests and model selection criteria.

3. Results
Figure 1 shows the raw interest rate data plotted against years (in months) from 1990 to 2025. The graph illustrates that interest

rates have fluctuated significantly over time, with notable peaks in 1995 and 2022. Between 2008 and 2015, there was a
dramatic decline, followed by an improvement. The rate reached its lowest point around 2020 and then rebounded.
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Figure 1: Raw interest rate data plotted against years (months)

Figure 2 illustrates the returns on interest rate data over the same period, demonstrating how the rates fluctuate and their
associated volatility. The graph shows abrupt rises and falls, indicating that there were periods of significant change.
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Figure 2: Returns on interest rate data plotted against years (months)

Around 2022, there are significant gains and losses, which align with major market changes. The returns plot illustrates how
interest rates fluctuate over time in a dynamic and unstable manner.
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Table 1 presents the descriptive statistics for interest rate returns, indicating a negative mean (-0.000376) and skewness (-
0.945294), which suggests left-skewed data with elevated kurtosis (10.8268). The Jarque-Bera (JB) value of 648.33 and the p-
value of 0.000 indicate that the data is not normally distributed.

Table 1: Summary descriptive statistics for interest rate return

Median
0.002331

Min
-0.731762

Max
0.446647

StdD.
0.116447

Kurtosis JB
10.8268 648.3318

P-value
0.000

Skewnes
-0.945294

Mean
-0.000376

The normality plot in Figure 3 indicates that the distribution is leptokurtic, meaning that most values are close to the mean,
while a few are far away from it.

Density

o

T T T T
-100 -50 (o] 50
Returns on Interest rate

Figure 3: Normality plot of the returns on interest rate
The ARMA Model as obtained from the linear regression model in equation (3.1), we have;

Interate =0.205448
(0.060)

+ 0.965 02Interater.1 +
(0.000)

3.1. Test for Heteroskedasticity (ARCH Effect)

Table 2: Testing for the presence of an ARCH effect

Estimator Lag 1
F-statistic 61.139
Prob F (1,237) 0.0003
n*R? 49.012
X%(1,1) 0.00

Source: Researcher’s Computations,2024
3.2. Different Estimated GARCH Models
3.2.1. ARCH (1,1)
fi =-0.5125,
o = 58.2190 + 0954907
p value = (0.000) (0.000)

AIC=7.5527
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3.2.2. ARCH (2,2)

fi =—0.58519,

o, = 50.977 + 0.705{7_, + 0.17990%_,
pvalue = (0.000) (0.000) (0.0586)
AIC=7.5277

3.2.3.GARCH (1, 1)

fi=-0.3275- 0.143407 |

8¢ = 9.9253 + 0.26094{i> | + 0.702807_,

pvalue = (0.000) (0.000) (0.000)
AIC= 75102
3.2.4. GARCH (2,2)

fi=-0.3213-0.0627f

6t = 1.672 + 0.67937  -0.6286{i._, + 1.091206% ; — 0.14130%,

pvalue = (0.0169) (0.000) (0.000) (0.000)
AIC= 7.4687
3.2.5. EGARCH (1,1)

fi =-0.3093 - 0.1475902

(0.1853)

t—-1
Ths T 2
Log (?) = 0.1996 + 0.3004 [-=1| — 0.1228 [-=2 +0.9414410g(6t‘1>
Ot-1 Ot-1
pvalue = (0.1219) (0.5563)  (0.0001)  (0.000),
AIC= 7.477558
3.2.6. EGARCH (2,2)
fi=-0.3845-0.1748{ ,
uy u 1%
Log (oy) =2.1315 +0.9032 || + 0.4873 [ + 0.3209 |52
Ot—1 Gt-2 Ot-2

p value =,(0.5563) (0.000) (0.0001)

3.2.7. TGARCH (1,1)

(0.000)  (0.4238)

When p =1and g = 1, the GJIR-GARCH (p,q) model is written as follows:

i =-0.2876-0.2127f,_,
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o2 = -0.2876 + 0.0351&?_, + 0.237802 + 0.80241,_,c2 ,
p value = (0.1219),(0.5563), (0.000), (0.0001),
1 when €., <0
ey =
Owhene, ;=0
AIC=7.4783
3.2.8. TGARCH (2,2)

fi = 0.7040-0.0197f, ,

62 = 3.5986 + 0.3519¢Z ; — 0.0301I,_,¢2 ,-0.4905¢2 , + 0.3922I,_,62 , + 0.915762 , + 0.0019307_,

pvalue = (0.1219), ( 0.5563), (0.000), (0.0001), (0.000), (0.4238), (0.000), (0.000), (0.0000), (0.8163)

1 when €., <0
1=

Owhene, ;=0
AlIC=7.290230
Table 3 shows the model fitness and selection outcomes for several ARCH, GARCH, EGARCH, and TGARCH models based
on their AIC values. The TGARCH (2,2) model had the lowest AIC value of 7.290 among all the models tested. This indicates
that the TGARCH (2,2) model is the most suitable for interest rate returns.

Table 3: Model fitness and selection

MODEL AlIC Least AIC
ARCH (1,1) 7.553
ARCH (2,2) 7.528
GARCH (1,1) 7.510
GARCH (2,2) 7.469
EGARCH (1,1) 7.478
EGARCH (2,2) 7.415
TGARCH (1,1) 7.478
TGARCH (2,2) 7.290 7.290

Based on the minimum as well as the least Deebom et al. [14] information criterion, the best considered model was TGARCH
(2,2) in the Generalised error distributional assumption, and this can be represented as follows:

TGARCH (2,2)

fi = 0.7040-0.01977, _,

62 = 3.5986 + 0.3519¢2 ; — 0.0301I,_,¢2_,-0.4905¢2 , + 0.3922I,_,62, + 0.915762 , + 0.0019307_,

pvalue = (0.1219), (0.5563), (0.000), (0.0001), (0.000), (0.4238), (0.000), (0.000), (0.0000), (0.8163)

1 when ¢,_; <0
iy =
Owhene,._; =0
AIC=7.290230
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Model diagnostics are performed to determine whether the selected model is suitable for prediction and forecasting. This
confirmatory test includes the Test for Presence of ARCH Effect, the Test for Serial Correlation, and a test for normality using
the QQ-plot for residuals of the selected model. Additionally, an investigation was conducted to examine the presence of ARCH
effects in the selected estimated model, using the ARCH-LM test. Table 4 contains the results obtained using the ARCH-LM
test for the ARCH effect. As observed, the n*X2>f-statistic indicates that the null hypothesis of no ARCH effect should be
accepted at a 5% level of significance.

Table 4: Heteroskedasticity test for the best fitted GARCH (2,2) model

Models Heteroskedasticity Test: ARCH Lag5 Lag 10
TGARCH (2,2) F-statistic 1.151686 1.510544
Prob. F (1,5,237, 229) 5.764434 14.83710

The result in Figure 4 indicates that there is no serial correlation, as the probability (p-values) is all greater than the standard
0.05 level of significance. Hence, there is no serial correlation. The test for Serial Correlation is done by checking the
correlogram of the residual squares.

Date: O8/28/18 Time: 23 .41

Sample: 1997MO7 2017M07
INncludea observatnons 240

Autocorrelation Partial Correlation AC PAC Q-Stat  Prob*
o 1 «0.137 -.0.137 45881 0032
f 2 0006 0013 459060 0.100
o = 3 0119 0.120 B.0740 0045
N - 4 0097 0134 102382 0024
e 5 0059 0096 11239 0047
L 6 0062 0073 12204 0058
o 7 0011 0021 12234 0093
ol 8 0043 0004 12695 0123
q- 9 0026 -00%8 12070 0.169
o 10 0.021 -0.011 129885 0225
B 11 0002 0015 12986 0294
e 12 .0.020 0022 13087 0.363
K 13 0016 0016 13149 0436
. 14 0034 0045 134380 0492
g 1% -0.070 -0.048 14703 0472
L 16 0041 0065 15 146 0514
g K 17 0.010 0016 15175 0.583
o 18 007 0078 16655 0547
. 19 0068 0070 117058 0532
K 20 -0.0%0 -0008 18529 0553
LN 29 0072 0049 19929 05206
o = 22 0110 ©0.106 23148 0393
g 23 0003 0048 23151 0452
ol 24 00371 -0003 23409 0496
“pe 2% 00%1 0031 24107 0512
g 26 0022 -0028 24243 0.562

' 27 0054 0024 25028 08573
q- 28 0041 0049 25481 0602
L 20 0077 0070 27092 0587
. . 200 0023 0020 27 245 0610
' 31 0019 0018 27 343 00655
32 0015 0009 27 409 00698

' 33 0014 0043 27 4863 0739

Figure 4: Correlogram of standardised residuals square

The Q-Q Plots for the Residuals are done to confirm if the data set used in the estimation exhibits the characteristics of data
drawn from a normal distribution. Additionally, the diagram in Figure 5 shows that the line of quantile and normality lies
straight on top of each other, indicating that the model is well-fitted. This result aligns with Atoi's [6] findings in his test for
the volatility of stock markets using the GARCH model.

40

20

20 —

10 4

0
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-20 -80 -0 -20 [0} 20 40 80

Quantiles of TGARCH(Z2,2)

Figure 5: QQ-plot for residuals of normal distribution
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4. Results and Discussion

The study utilises Nigeria's interest rate data, extracted from deposit money banks, as reported on the Central Bank of Nigeria
(CBN) online statistical database. The data spans from July 1997 to July 2024. Conditional variance models were fitted to the
conditionally compounded monthly interest rate data. In total, eight different GARCH models were estimated, assuming
normally distributed errors. Several conditions were considered when estimating the model, and these were incorporated into
the estimation technique. Some of these conditions include time plots, summary descriptive statistics, tests for ARCH effects,
model estimation and selection, and diagnostic tests. Figure 1 shows the dynamics of the time plot for monthly interest rates
from 1997 to 2024. The graph reveals that the variable exhibits trends, with an upward projection followed by a decline in 2001
and a subsequent rise in 2003. The fluctuations in the series continue across the years. Similarly, Figure 2 shows evidence of
clustering in the time plot of the returns series, with sharp increases followed by sharp decreases, indicating instability in the
rate of returns on interest rates over the study period. These results are consistent with the findings of Meher et al. [1], who
investigated oil price macroeconomic volatility in Nigeria and found volatility clustering in oil price returns. Similarly, the
interest rate returns variable in this study was subjected to descriptive tests, and the results indicated that the variable did not
meet the assumptions of a normally distributed variable.

Table 1 presents summary statistics for interest rate returns from July 1997 to July 2024. The estimated mean (-0.000376) has
a negative sign, indicating that the variable is negatively mean-reverting in nature. The standard deviation (0.116447) measures
the degree of risk associated with the variable. A higher standard deviation implies greater volatility persistence and associated
risk. The 117.8409% difference between the minimum and maximum returns on interest rates shows the level of variation and
the fairness of returns within the sampled period. The skewness coefficient (-0.945294) is negative, indicating that the variable
is negatively skewed to the left, a common feature of fair returns. Kurtosis (10.82680), which is greater than three, suggests
that the variable does not exhibit the characteristics of normally distributed data. The Jarque-Bera statistic (648.3318), with a
corresponding probability value of 0.0000, leads to the rejection of the null hypothesis of normality and the acceptance of the
alternative hypothesis. As suggested by Mandelbrot [2], it is necessary to use alternative statistics when modelling the volatility
of interest rate returns. Thus, the study employs GARCH family models, based on the assumption of a normal error distribution,
with a fixed degree of freedom incorporated into the models. The variable under investigation was further subjected to an Auto-
Regressive Moving Average (ARMA) model to obtain the residuals from the estimation of the returns series. The results show
that the intercept (0.205448) is significant at the 10% level, and the ARCH component (0.965) is significant at the 5% level,
like the findings of Eke [3] on oil price-macroeconomic volatility in Nigeria.

In another development, Table 2 shows the test for heteroskedasticity (ARCH effect) of the residuals obtained from the model
in equation (4.1). The test indicates the persistence of ARCH effects. The F-statistic (61.139) is greater than its corresponding
chi-square statistic (49.012), resulting in the rejection of the null hypothesis and the acceptance of the alternative hypothesis.
This confirms the presence of ARCH effects in the return series of interest rates, supporting the assertion by Kwiatkowski et
al. [4] that variables with such effects can be estimated using GARCH models. As previously mentioned, interest rate returns
exhibit persistent shocks and continuous volatility clustering. To capture these volatility characteristics, eight different GARCH
models were used in the estimation. These models were estimated with normal error distribution assumptions to better
understand the specific behaviour of interest rate returns under different error distribution assumptions. The result in model
(4.1) confirms that time-varying volatility includes a constant (58.2190) and an ARCH component that depends on past errors.
The ARCH effect is statistically significant at the 5% level, and since the constant is not greater than one but lies between zero
and one, the ARCH effect is not explosive. The model suggests an ARCH (1) effect, with an AIC of 7.5527. Model (4.2) shows
that time-varying volatility includes a constant (50.977) and ARCH components that depend on immediate and second-past
errors. The ARCH effects are statistically significant at the 5% level, and since the constant values lie between zero and one,
the ARCH effect is not explosive.

The model suggests an ARCH (2) effect, with an AIC of 7.5527. Both models indicate positive variance, suggesting that shocks
from previous periods result in greater initial innovations in absolute terms, which means smaller ARCH effects in the future.
The results obtained in models (4.1) and (4.3) confirm the underlying assumptions of the ARCH effect as suggested by Engle
[10] in his study on inflation in the U.K. Model (4.3) contains two components: the mean and the variance components. The
intercept in the variance component is positive and statistically significant at the 5% level. Similarly, the ARCH components
are positive and statistically significant at the 5% level, indicating that the interest rate return of the preceding month has a
statistically significant influence on the interest rate return of the current month. This confirms that interest rate volatility is
influenced by its own positive ARCH and GARCH components. The model estimates an Akaike Information Criterion (AIC)
of 7.5102 and 96.37% volatility persistence. The first-order ARCH component in the variance component is positive and
statistically significant at the 5% level. In comparison, the second-order ARCH component is negative but also statistically
significant at the 5% level. This suggests that the preceding month's interest rate return has a positive impact on the current
month's return, whereas the second-order return has a negative impact. The AIC for this model is 7.4687, and the degree of
volatility persistence for the first and second orders is 177.05% and -76.99%, respectively. This shows that volatility persistence
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decreases in the second-order estimation, as indicated by the negative second GARCH coefficient. These results are consistent
with Gujarati's [5] findings on stochastic volatility in interest rate models.

The EGARCH (1, 1) model, shown in model (4.5), estimates the volatility of interest rate returns. The coefficient of the ARCH
term is positive but not statistically significant. The asymmetric term is negative and statistically significant at the 5% level.
This suggests that the relationship between past returns and future volatility is positive, and that higher leverage effects due to
negative returns will likely lead to lower interest rates, reflecting a higher debt-to-equity ratio. The model’s AIC is 7.4776, with
a volatility persistence degree of 124.184%. The EGARCH (2, 2) model, shown in model (4.6), estimates volatility with
significant positive coefficients for the ARCH terms and the asymmetric term. The first-order GARCH term is negative and
non-significant, while the second-order GARCH term is positive and statistically significant at the 5% level. The model
estimates 66.68% volatility persistence in the first order and 103.46% in the second order, suggesting that higher-order models
capture higher levels of volatility persistence. The AIC for this model is 7.3338. In the ARCH, the coefficients are positive but
not statistically significant, indicating the presence of ARCH effects. Despite this, a leverage effect is observed, where negative
news has a greater impact on volatility than positive news. The asymmetric term is positive and statistically significant at the
5% level, with an AIC of 7.4783. Finally, model 4.8 shows that the ARCH coefficient in the first-order model is positive but
not statistically significant, while in the second-order model, it is negative and statistically significant. This confirms the
presence of ARCH effects in the second-order TGARCH model. The leverage effect suggests that bad news has a greater impact
on volatility than good news, with the second-order model indicating the opposite. The AIC for this model is 7.4783, consistent
with Gujarati [5].

e HO1: There is no presence of ARCH effect on monthly data returns on Nigerian Interest rate between 1997 and 2024.

To test HO1, we investigate if there is an ARCH effect both P(F) and P (X2), [where P(F) and P(X2) are tail probabilities]. The
p-value is less than 0.05, the level of significance. This is from the Heteroskedasticity test in Table 2.

e HO02: There is no general comparative difference between the performance of the first and second Order GARCH models
in modelling the returns on the monthly interest rate between July 1997 and July 2024.

From the values of the AIC for the various models, we have the following results: for the ARCH models, the AIC values for
ARCH (1,1) and ARCH (2,2) are -7.553 and -7.528, respectively; for the GARCH models, GARCH(1,1) and GARCH(2,2)
yield AIC values of -7.510 and -7.469, respectively; for the EGARCH models, EGARCH(1,1) and EGARCH(2,2) have AIC
values of -7.478 and -7.415, respectively; and for the TGARCH models, TGARCH(1,1) and TGARCH(2,2) have AIC values
of -7.478 and -7.290, respectively. Therefore, the model with the lowest AIC value is TGARCH (2,2). These results indicate
that the TGARCH (2,2) model fits the volatility model better than the first-order GARCH model. Based on these findings, we
reject the null hypothesis (H0) and uphold the view that there is a significant difference in performance between the first- and
second-order GARCH models in modelling the returns on monthly interest rates from July 1997 to July 2024.

5. Conclusion

This study examines the estimation ability and performance of first- and second-order univariate GARCH models in modelling
the conditional variance of interest rates. It provides some important insights into modelling the volatility of interest rate returns.
The results indicate that the second-order TGARCH model (2,2) provides the best fit to the data. Model selection was based on
the Akaike Information Criterion (AIC), and model diagnostics were performed using ARCH effect tests, QQ plots, and serial
correlation tests to ensure robustness. From the results, we can conclude that those who obtained loans from banks during the
study period had a higher probability of gaining than losing. This is because negative shocks tend to have a disproportionate
effect on future volatility, and the second-order TGARCH model takes these asymmetry behaviours into account. For example,
during an economic downturn, an unexpected cut in interest rates may lead to higher-than-expected volatility due to uncertainty
about future economic conditions. Therefore, given the risks associated with borrowing from depository banks, investing in
stocks, and pricing assets with corresponding interest income, financial analysts, investors, companies, and governments are
advised to exercise caution when engaging in any business or financial activity involving interest rates.
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